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This paper reports an analytical and numerical study of natural convection in a horizontal binary fluid
layer confined between two horizontal porous walls. The cavity is heated from the bottom by a constant
heat flux while the long side walls are impermeable and adiabatic. The Beavers–Joseph slip condition on
velocity is applied at the interface between the fluid and porous layers. Both double-diffusive convection
and Soret-induced convection are considered. An analytical model, based on the parallel flow approxima-
tion, is proposed for the case of a shallow layer. The flow and heat and mass transfer variables are
obtained in terms of the governing parameters of the problem. The critical Rayleigh numbers for the
onset of supercritical and subcritical convection are predicted for various hydrodynamic boundary con-
ditions. The results for a fluid layer bounded by solid walls and free surfaces emerge from the present
analysis as limiting cases. The study is completed by a numerical solution of the full governing equations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Rayleigh–Benard convection in a horizontal binary fluid layer
has received considerable attention since this phenomenon can
be found in a wide range of situations. In nature such flows are
encountered in the oceans, lakes, solar pounds and the atmo-
sphere. In industry, examples include chemical processes, crystal
growth, energy storage, material processing as solidification, food
processing, etc. For a review of the fundamental work in this area,
see for instance Platten and Legros (1984) or Turner (1985).

Earlier studies on this topic are concerned with double-diffusive
convection in a horizontal layer for which the flows, induced by the
buoyancy forces, result from the imposition of both thermal and
solutal boundary conditions on the horizontal walls. The onset of
convection in binary mixtures were found to be very different from
those reported in the past, in pure fluids. Thus, as discussed in de-
tails by Mamou et al. (2001), for instance, the onset of motion can
arise at Rayleigh numbers below the supercritical value, indicating
the development of subcritical flows. More recently, the onset of
Soret-induced convection in a horizontal layer of a binary mixture,
has been investigated by many authors. For this situation the mass
fluxes within the layer result from the effect of thermal diffusion. A
recent review of these studies is given by Ouriemi et al. (2005) for
the case of layers of binary fluids under various boundary condi-
tions. The case of porous layers saturated by binary solutions has
been review by Bahloul et al. (2007).
ll rights reserved.

: +1 514 340 5917.
loui).
lloui).
Most available studies on this problem are concerned with the
case of horizontal fluid layer bounded by rigid impervious walls.
However, in many applications, the convective flow is in interaction
with more complex boundary conditions such as by porous layers
for instance. The interaction that occurs at the interface between a
fluid and a porous medium has been formulated in the past accord-
ing to two approaches. One approach is to use the Brinkman equa-
tion for the porous layer with the continuity of velocity and shear
at the interface conditions. Using this model the linear stability the-
ory was used by Somerton and Catton (1982) for the study of the on-
set of motion of fluid-saturated porous medium with internal heat
generation overlaid with a fluid layer, and by Vasseur et al. (1989)
for the analysis of the stability in a system consisting of a horizontal
fluid layer over a layer of porous medium. The same problem was
reconsidered recently by Hirta et al. (2007a,b), using both the so-
called one-domain and two-domain approaches. The different
treatment of the interfacial region is discussed by these authors.
The influence of the stress jump boundary condition proposed by
Ochoa-Tapia and Whitaker (1995a,b) has been investigated by Hirta
et al. (2007a,b). The importance of the fluid-porous interfacial mod-
eling was demonstrated. The other approach is to employ Darcy’s
equation for the porous layer with the slip conditions, proposed
by Beavers and Joseph (1967) or Jones (1973), as one of the interfa-
cial conditions. Nield (1967, 1983) applied the Beavers and Joseph
boundary condition to study the thermal stability of superposed
porous and fluid layers for various boundary conditions at the upper
and lower of the system. Since then, the majority of linear stability
analyses have been carried out using the slip boundary condition
(Chen and Chen, 1988; Carr and Straughan, 2003; Carr, 2004; Shi-
vakumara et al. 2006). The Beavers–Joseph model has also been
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Fig. 1. Schematic diagram of the problem domain and coordinate system.

Nomenclature

A aspect ratio of the cavity, (L0/H0)
D mass diffusivity of species, m2/K
D0 thermodiffusion coefficient, m2/s K
Da Darcy-number K=H02

Da* modified Darcy-number
ffiffiffiffiffiffi
Da
p

=a�

g gravitational acceleration, m/s2

H0 height of fluid layer, m
j0 constant mass flux per unit area, kg/m s
k thermal conductivity, W/(m K)
L0 width of fluid layer, m
Le Lewis number, (a/D)
N mass fraction
N0 reference mass fraction
Nu Nusselt number, Eq. (18)
Pr Prandtl number, m/a
q
0

constant heat flux per unit area, W/m2

RaS solutal Rayleigh number, RaTuLe
RaT thermal Rayleigh number, gb0TDT 0H03=am
Rasub

TC subcritical Rayleigh number, Eq. (38)
Rasup

TC supercritical Rayleigh number, Eq. (37)
S normalized mass fraction, N/DN
Sh Sherwood number, Eq. (19)
t dimensionless time, t0a=H02

T dimensionless temperature, ðT 0 � T 00Þ=DT 0

u dimensionless velocity in x-direction, ðu0H0=aÞ
v dimensionless velocity in y-direction, ðv0H0=aÞ
x dimensionless coordinate axis, ðx0=H0Þ
y dimensionless coordinate axis, ðy0=H0Þ

Greek symbols
a thermal diffusivity, m2/s
a* empirical dimensionless slip coefficient
bN concentration expansion coefficient
b0T thermal expansion coefficient, K�1

m kinematic viscosity of fluid, m2/s
/ buoyancy ratio, ðbNDN=b0TDT 0Þ
q density of fluid, kg/m3

W dimensionless stream function, W0=a

Subscript
0 reference state

Superscript
0 refers to dimensional variable

Z. Alloui et al. / International Journal of Heat and Fluid Flow 29 (2008) 1154–1163 1155
used in the past to investigate natural convection within systems of
superposed porous and fluid layers. Poulikakos et al. (1986) re-
ported a numerical analysis of high Rayleigh convection for the case
of a fluid layer on top of a porous layer. The effects of combined
Marangoni and Rayleigh convections in a liquid layer, underlain
by a porous layer, have been considered by Saghir et al. (2002). Re-
sults indicate that the Marangoni convection enhances the flow in
the liquid layer but reduces the convection in the porous layer.

All the above studies are concerned with the effects of the inter-
facial conditions on the convective motion within a system of
superposed porous and fluid layers. When the fluid is pure the
resulting flows are induced by a single buoyancy force, namely
temperature gradients. Binary mixtures are encountered in many
practical situations such as in petroleum extraction, underground
diffusion of nuclear waste, oil reservoir analysis and separation of
mixtures. For instance water–ethanol mixtures are typical materi-
als present in a wide range of areas, such as oil reservoirs (Saghir
et al., 2004). The purpose of the present work is to investigate nat-
ural convection in a horizontal layer of a binary mixture bounded
by two thin porous layers. The fluid layer is assumed to be heated
and salted from the bottom by constant fluxes and to be shallow.
Under these conditions, approximate analytical solutions for uni-
cellular convection in the central part of the layer can be obtained
using a parallel flow assumption. Results are presented for the on-
set of motion and the convective heat and mass transfers in terms
of the governing parameters of the problem. Also, the stability of
the parallel flow regime is investigated numerically in order to pre-
dict the critical Rayleigh number for Hopf’s bifurcation.

2. Mathematical formulation

The configuration considered in this study is a horizontal shal-
low cavity, of thickness H0 and width L0 filled with a binary mixture
and bounded by thin horizontal porous layers (see Fig. 1). The ori-
gin of the coordinate system is located at the center of the cavity
with x0 and y0 being the horizontal and vertical coordinates, respec-
tively. All the boundaries are impermeable. Neumann boundary
conditions are applied, for both temperature and concentration,
on the horizontal walls of the layer. The binary fluid is assumed
to satisfy the Boussinesq approximation. The density variation
with temperature and concentration is described by the state
equation q ¼ q0½1� b0TðT

0 � T 00Þ � bNðN � N0Þ� where q0 is the fluid
mixture density at temperature T 0 ¼ T 00 and mass fraction N = N0

and b0T and bN are the thermal and concentration expansion coeffi-
cients, respectively.

The equations relating the fluxes of heat, ~Q 0, and matter,~J0, to
the thermal and solute gradients present in the binary fluid mix-
ture are given by (see for instance, De Groot and Mazur, 1962)

~Q 0 ¼ �krT 0; ~J0 ¼ �qDrN � qD0N0ð1� N0ÞrT 0 ð1Þ

where k and D are the thermal conductivity and the isothermal dif-
fusion coefficient. D0 is the coefficient for the Soret effect.

The governing equations which describe the system behaviour
are conservation of momentum, energy and species which are gi-
ven below in terms of the stream function W0 as

oðr2W0Þ
ot0

þ JðW0;r2W0Þ ¼ mr4W0 � gb0T
m

o

ox0
T 0 þ bN

b0T
N

� �
ð2Þ

oT 0

ot0
þ JðW0; T 0Þ ¼ ar2T 0 ð3Þ

oN
ot0
þ JðW0;NÞ ¼ Dr2N þ aD0N0ð1� N0Þr2T 0 ð4Þ



1156 Z. Alloui et al. / International Journal of Heat and Fluid Flow 29 (2008) 1154–1163
where, as usual, in order to satisfy the continuity equation, the
stream function W0 is defined such that u0 ¼ oW0=oy0, v0 ¼ �oW0=ox0

and Jðf ; gÞ ¼ of=oy og=ox� of=ox og=oy.
The hydrodynamic boundary conditions applied on the walls of

the layer are

x0 ¼ �L0=2 W0 ¼ 0
oW0

ox0
¼ 0 ð5Þ

y0 ¼ �H0=2 W0 ¼ 0
d2W0

dy02
¼ a�1ffiffiffiffi

K
p dW0

dy0
ð6Þ

y0 ¼ H0=2 W0 ¼ 0
d2W0

dy02
¼ �a�2ffiffiffiffi

K
p dW0

dy0
ð7Þ

where K is the permeability of the porous boundary and a* is the
dimensionless material constant called the slip parameter (Beavers
and Joseph, 1967).

Eq. (5) expresses the non-slip boundary condition on solid
boundaries while Eqs. (6) and (7) are the Beavers–Joseph condi-
tions at the interface of the horizontal boundaries of the fluid layer.

The thermal and solutal boundary conditions applied on the
wall of the layer are

x0 ¼ �L0=2
oT 0

ox0
¼ 0

oN
ox0
¼ 0 ð8Þ

y0 ¼ �H0=2
oT 0

oy0
¼ � q0

k
oN
oy0
¼ j0ð1� aÞ

qD
� a

D0

D
N0ð1� N0Þ

oT 0

oy0
ð9Þ

The governing equations are nondimensionalized by scaling
length by H0, stream function by the thermal diffusivity a and time
by a/H02. Also, we introduce the reduced temperature T ¼ ðT 0 � T 00Þ=
DT 0 and the reduced concentration S = N/DN, where DT0 = q0H0/k and
DN = �j0/qD for double-diffusive convection and DN = N0(1 �
N0)DT0D0/D for Soret-driven convection. In the above expressions,
q0 and j0 are uniform fluxes of heat and mass per unit area respec-
tively, applied on the horizontal walls of the system and a real
number, the significance of which will be discussed below.

The dimensionless equations governing the present problem
then read

or2W
ot
þ JðW;r2WÞ ¼ Prr4W� PrRaT

oT
ox
þ u

oS
ox

� �
ð10Þ

oT
ot
þ JðW; TÞ ¼ r2T ð11Þ

oS
ot
þ JðW; SÞ ¼ 1

Le
ðr2S� ar2TÞ ð12Þ

The corresponding boundary conditions are

x ¼ �A=2 W ¼ 0
oW
ox
¼ 0 ð13Þ

y ¼ �1=2 W ¼ 0
d2W
dy2 ¼

1
Da�1

dW
dy

ð14Þ

y ¼ 1=2 W ¼ 0
d2W
dy2 ¼

�1
Da�2

dW
dy

ð15Þ

x ¼ �A=2
oT
ox
¼ 0

oS
ox
¼ 0 ð16Þ

y ¼ �1=2
oT
oy
¼ �1

oS
oy
¼ ða� 1Þ þ a

oT
oy

ð17Þ

From the above equations it is observed that the present prob-
lem is governed by the thermal Rayleigh number RaT ¼ gb0TDT 0H03=
am, buoyancy ratio u ¼ bNDN=b0TDT 0, Lewis number Le = a/D, Prandtl
number Pr = m/a, aspect ratio A = L0/H0, modified Darcy-number
Da� ¼

ffiffiffiffiffiffi
Da
p

=a� and parameter a.
The case a = 0 corresponds to double-diffusive convection for
which the solutal buoyancy forces in the liquid layer are induced
by the imposition of a constant mass flux q0 such that oT/oy = �1
on the vertical boundaries. According to Eq. (17) the corresponding
solutal boundary conditions are given by oS/oy = �1. On the other
hand a = 1 corresponds to the case of a binary fluid subjects to
the Soret effect.

In the present study the intensity of the thermal buoyancy force
and its relation to solutal buoyancy force are expressed in terms of
parameter RaT and u. The heat and mass transfer rates can be ex-
pressed in terms of the Nusselt and Sherwood numbers, and can
be obtained from the following expressions:

Nu ¼ q0

kDT 0=H0
¼ 1

DT
ð18Þ

Sh ¼ j0

DDN=H0
¼ 1

DS
ð19Þ

where DT = T(0,�1/2)�T(0,1/2) and DS = S(0,�1/2)�S(0,1/2) are the
temperature and concentration differences, evaluated at x = 0. This
follows from the fact that DT and DS are independent of x, such that
they are arbitrarily evaluated at the center of the cavity.
3. Numerical solution

The solution of the governing equations and boundary condi-
tions, Eqs. (10)–(12), is obtained using a control volume approach
and SIMPLER algorithm (Patankar,1980). A finite difference proce-
dure with variable grid size is considered for better consideration
of boundary conditions. The power-law scheme is used to evaluate
the flow, heat and mass fluxes across each of the control volume
boundaries. A second order back-wards finite difference scheme
is employed to discretize the temporal terms appearing in the gov-
erning equations (see Ouriemi et al. (2005) for more details).

A line-by-line tridiagonal matrix algorithm with relaxation is
used in conjunction with iterations to solve the non-linear discret-
ized equations. We consider that convergence is reached whenP

i

P
jjWnþ1

i;j �Wn
i;jjP

i

P
jjWnþ1

i;j j
6 10�6 ð20Þ

where the superscripts n and (n + 1) indicate the value of the nth
and (n + 1)th iterations, respectively, i and j indices denote grid
location in the (x,y) plane. Numerical tests, using various mesh
sizes, were done for the same conditions in order to determine
the best compromise between accuracy of the results and computer
time. Thus, most of the calculations presented in this paper were
performed using a 60 � 180 grid.

As discussed above the present problem depends upon the
parameters RaT, u, Le, Pr, a*, Da, A and a. The numerical results pre-
sented in this study were obtained for Pr = 7 and A = 8. Such an as-
pect ratio is large enough to approximate the parallel flow model
describe in the following section. It is well known that the slip
coefficient a*, in Eqs. (6) and (7), depends on the porosity and the
structure of the porosity of the porous medium, varying from 0.1
to 4 (Beavers and Joseph, 1967). Therefore, in the present study,
the effect of a* was examined over a range 0 6 a� 6 10. Further-
more, in order not to violate the Darcy flow model, the Darcy-num-
ber values have been restricted to the 10�8–10�4 range. With these
values, the range of the modified Darcy-number Da� ¼

ffiffiffiffiffiffi
Da
p

=a� ex-
tends from almost zero to infinity.

Typical numerical results are presented in Fig. 2a and b for
RaT = 1000, Le = 10, u = 0.2, A = 6 and a = 0 (double-diffusive-driven
convection). On the graph, streamlines, isotherms and isoconcen-
trates are presented from top to bottom Fig. 2a) corresponds to
the case Da�1 ¼ Da�2 ¼ 0, for which the upper and lower boundaries
correspond to solid walls. This situation has been investigated in
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Fig. 2. Contour lines of stream function (top), temperature (center) and concen-
tration (bottom) for RaT ¼ 103, Le = 10, u = 0.2, a = 0, Da�1 ¼ 0 and: (a) Da�2 ¼ 0
Wmax ¼ 1:102, Nu = 1.2905, Sh = 3.1801 and (b) Da�2 ¼ 1, Wmax ¼ 2:296, Nu = 2.054
and Sh = 3.931.
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details in the past by Mamou et al. (2001). Fig. 2b is obtained for
the case of solid lower boundary ðDa�1 ¼ 0Þ and upper free surface
ðDa�2 ¼ 1Þ. As expected the intensity of the resulting flow pattern
is enhanced and the symmetry of solution with respect to the cen-
ter of the cavity is destroyed. These numerical results clearly indi-
cate that for a shallow layer (A� 1) the flow in the core region of
the enclosure is clearly parallel, while the temperature and con-
centration are linearly stratified in the horizontal direction. The
analytical solution, developed in the following section, will rely
on these observations.

4. Analytical solution

In the limit of a shallow cavity A� 1, the governing Eqs. (10)–
(12) can be considerably simplified under the parallel flow
assumption Wðx; yÞ � WðyÞ; Tðx; yÞ � CTxþ hTðyÞandSðx; yÞ � CSxþ
hSðyÞ, where CT and CS are unknown constant temperature and con-
centration gradients respectively in x-direction (see for instance
Ouriemi et al., 2005).

Using the above approximations, Eqs. (10)–(12) reduce to the
following systems of equations:

d4W
dy4 ¼ RaTðCT þ uCSÞ ð21Þ

dW
dy

CT ¼
d2hT

dy2 ð22Þ

dW
dy

CS ¼
1
Le

d2hS

dy2 � a
d2hT

dy2

" #
ð23Þ

The solution of Eqs. (21)–(23), satisfying the boundary condi-
tions 14, 15, and 17, is

W ¼ W0ð4y2 � 1Þð4y2 � 2L1 � 8L2yþ 1Þ ð24Þ

hT ¼
W0CT

15
yð48y4 � 10L1ð4y2 � 3Þ � 60L2ð2y3 � yÞ � 15Þ � y ð25Þ

hS ¼
W0ðCSLeþ aCTÞ

15
yð48y4 � 10L1ð4y2 � 3Þ � 60L2ð2y3 � yÞ

� 15Þ � y ð26Þ

where W0 ¼ 15Ra0
TðCT þ uCSÞ=8;Ra0

T ¼ RaT=Rasup
0 ;Rasup

0 ¼ 720 and
the contribution of two modified Darcy-numbers are represented
in terms of L1 and L2 defined as follows:

L1 ¼ ð36Da�1Da�2 þ 6ðDa�1 þ Da�2Þ þ 1Þ=ð12Da�1Da�2 þ 4ðDa�1
þ Da�2Þ þ 1Þ ð27Þ

L2 ¼ �ðDa�1 � Da�2Þ=ð12Da�1Da�2 þ 4ðDa�1 þ Da�2Þ þ 1Þ ð28Þ

The effect of the return flow from the end regions is taken into
account via a global balance (see Mamou et al., 2001, for instance).
Making use of the boundary conditions, Eqs. (13) and (16), the
temperature and concentration gradients CT and CS can be obtained
as

CT ¼
B2W0

1þ B1W
2
0

ð29Þ

CS ¼
aCTðLeþ 1Þ þ ð1� aÞB2LeW0

1þ B1Le2W2
0

ð30Þ

where

B1 ¼
4

45
24L2

1 �
192

7
L1 þ

96
7

L2
2 þ 8

� �
ð31Þ

and B2 ¼ 4ðL1=3� 1=5Þ ð32Þ

Substituting the above equations of CT and CS into the expres-
sion for W0, the following fifth order polynomial is obtained:

W0 ðB4
1Le4ÞW4

0 � ðB
2
1Le2Þd1W

2
0 � d2=4

h i
¼ 0 ð33Þ

where

d1 ¼ B1
15
8

Ra0
TB2ðLe2 þ uLeð1� aÞÞ � Le2 � 1

� �
ð34Þ

d2 ¼ 4B2
1Le2 15

8
Ra0

TB2ð1þ uðaþ LeÞÞ � 1
� �

ð35Þ

The solution for Eq. (33) is explicitly expressed as follows:

W0 ¼ �
ffiffiffi
2
p

2B1Le
d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2

q� �1=2

;0

( )
ð36Þ

in which the solution W0 = 0 represents the pure conduction rest
state and the four other solutions stand for convective solutions.
Eq. (36) also leads us to the critical values for existence of convec-
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Fig. 3. Distribution of (a) horizontal velocity component, u, (b) temperature, T, and
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RaT ¼ 103, Le = 10, u = 0.2, a ¼ 0, Da�1 ¼ 0 and Da2 ¼ 0;0:2;1.
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tion in the layer. The supercritical Rayleigh number Rasup
TC , for the

onset of motion from the rest state, is obtained, when the condi-
tions d1 < 0 and d2 = 0 are satisfied, as

Rasup
TC ¼

R0

ð1þ uðaþ LeÞÞ ð37Þ

where R0 ¼ 8Rasup
0 =15B2.

In the present analysis, it can be demonstrated that subcritical
flows with a finite-amplitude convection occur when d1 > 0 and
d2

1 þ d2 ¼ 0 (see Mamou et al., 2001) as

Rasub
TC ¼

R0ð1þ LeÞ
Le½1þ uð1� aÞ�2

�
h
ðLe� 1ÞðLe� uÞ � auðLeþ 1Þ

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uLeðLeþ a� 1Þðau� Leþ 1Þ

p i
ð38Þ

The local heat and mass transfer rates are obtained according, to
Eqs. (18), (19), (25), and (26), by

Nu ¼ 1
1� B2W0CT

ð39Þ

Sh ¼ 1
1� B2W0ðCSLeþ aCTÞ

ð40Þ

The above analytical solution can be checked against particular
results for the following special cases.

4.1. Fluid layer bounded by two solid horizontal walls

For this situation Da�1 ! 0 and Da�2 ! 0 such that L1 = 1, L2 = 0,
B1 = 128/315, B2 = 8/15 and R0 = 720. Upon substituting these con-
stants into Eqs. (24), (25), (26), (37), (38), (39), and (40) yields the
solution obtained in the past by Ouriemi et al. (2005).

4.2. Fluid layer bounded by a solid wall and a free boundary

This situation is reached either for Da�1 ! 0 and Da�2 !1 (or for
Da�1 !1 and Da�2 ! 0). The resulting constants are then given by
L1 = 3/2, L2 = 1/4, B1 = 608/315, B2 = 6/5 and R0 = 320. This situation
is a particular case of the problem considered by Mahidjiba et al.
(2006), i.e. flows in a fluid layer induced by the combined action
of shear stress and the Soret effect.

4.3. Fluid layer bounded by two free surfaces

This situation occurs for Da�1 !1 and Da�2 !1. As a result it is
found that L1 = 3, L2 = 0, B1 = 3968/315, B2 = 16/5 and R0 = 120. For
this situation, which has not been investigated in the literature, it
is readily found that

W ¼ W0ð4y2 � 1Þð4y2 � 5Þ

hT ¼
W0CT

15
yð48y4 � 120y2 þ 75Þ � y

hS ¼
W0ðCSLeþ aCTÞ

15
yð48y4 � 120y2 þ 75Þ � y

ð41Þ

where W0 is given by Eq. (36).
The supercritical and subcritical Rayleigh numbers are given by

Eqs. (37) and (38) while the Nusselt and Sherwood numbers can be
evaluated from Eqs. (39) and (40).

The distribution of the velocity component, u, temperature, T,
and concentration, S, profiles in the vertical mid-plane (x = 0) of
the cavity is illustrated in Fig. 3. This graph has been plotted for
RaT = 103, Le = 10, u = 0.2, a = 0, Da�1 ¼ 0 (solid lower boundary)
and various values of Da�2. The result shows that the approximate
model (solid lines), based on the parallel flow approximation, is
in excellent agreement with the numerical solution of the full gov-
erning equations. The effect of the conditions imposed on the
upper boundary is clearly observed from Fig. 3. The intensity of
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the flow (velocity) increases considerably near the upper surface
when Da�2 increases from zero (solid boundary) to infinity (free
upper surface). The influence of Da�2 on T and S is also found to
be significant.

Fig. 4 exemplifies the effect of parameter Da�2 on the bifurcation
diagram in terms of Wmax the maximum value of the streamfunc-
tion as a function of RaT for u = 0.2, Le = 2, Da�1 ¼ 0 and a = 0 and
1. The curves depicted in the graphs are the prediction of the par-
allel flow approximation. The numerical solution of the full govern-
ing equations, obtained for A = 8 and Pr = 7 are depicted by dots
and are seen to be, here again, in good agreement with the analyt-
ical solution. The results presented in Fig. 4 are obtained for u > 0,
namely u = 0.2, for which the thermal and solutal buoyancy forces
are destabilizing. For this situation it is well know that, as dis-
cussed by many author (see Mamou et al. (2001), for instance),
the onset of convection occurs through a pitchfork bifurcation.
Thus, for Da�2 ¼ 0, i.e. for a fluid layer bounded by solid walls, tran-
sition from the rest state occurs at a supercritical Rayleigh number
Rasup

TC ¼ 514:3 for double-diffusive convection (a = 0) and Rasup
TC ¼

450 for Soret-induced convection. The case Da�2 � 1 corresponds
to a fluid layer with a free boundary condition for which
Rasup

TC ¼ 228:6 for a = 0 and Rasup
TC ¼ 200 for a = 1. Curves for inter-
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Fig. 4. Bifurcation diagrams in terms of Wmax versus RaT for variou
mediate values of Da�2, namely Da�2 ¼ 0:05 and 0.5 are also pre-
sented in Fig. 4 to illustrate the influence of this boundary
condition on the present problem.

The results obtained for u < 0, namely u = �0.2, are presented in
Fig. 5, for the same other conditions as those of Fig. 4. For this sit-
uation the thermal and solutal forces are opposing each other and
the graphs indicate the occurrence of subcritical bifurcation curves,
as predicted by Eq. (38). For the conditions considered here when
Da�2 ¼ 0 the onset of convection are Rasub

TC ¼ 1155:6 for a ¼ 0 and
Rasub

TC ¼ 1285:2 for a = 1. Similarly, when Da�2 ¼ 1, Rasub
TC ¼ 514:08

for a = 0 and Rasub
TC ¼ 571:68 for a = 1. The result obtained for

RaT < 0 (not presented here), corresponding to the case of a cavity
heated from the top indicate that convection occurs through a
pitchfork situation at a supercritical Rayleigh number given by
Eq. (37).

5. Linear stability analysis

A linear stability analysis is presented in this section to deter-
mine the criterion for the onset of oscillatory convection.

We consider the convective flows predicted by the parallel flow
approximation Eqs. (24)–(26). This flow is not expected to remain
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250 500 750 1000 1250 1500 1750 2000

-3

-2

-1

0

1

2

3 Analytical
Analytical
Numerical

00.050.5Da =Ψ m
ax

Ra

82

T

*

250 500 750 1000 1250 1500 1750 2000

-3

-2

-1

0

1

2

3 Analytical
Analytical
Numerical

00.050.5Da =Ψ m
ax

Ra

82

T

*

a

b

Fig. 5. Bifurcation diagrams in terms of Wmax versus RaT for various values of Da�2 and Le = 2, u = �0.2 and (a) a = 0 and (b) a = 1.
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steady independently of the range of the governing parameters. In
fact, when the intensity of the flow is increased above a critical va-
lue it becomes instable. At the very beginning of instability, the
global flow can be assumed to be a superposition of the basic flow
[Wðx; yÞ � WðyÞ; Tðx; yÞ � CTxþ hTðyÞandSðx; yÞ � CSxþ hSðyÞ] and an
infinitesimal perturbation. Thus, we have

ŵðt; x; yÞ ¼ ~wðyÞeptþikx

ĥTðt; x; yÞ ¼ ~hTðyÞeptþikx

ĥSðt; x; yÞ ¼ ~hSðyÞeptþikx

9>=
>; ð42Þ

where p ¼ rþ ix is the complex amplification rate of the perturba-
tion, k is the real wave number and x the frequency.

Substitution of the sum of the base flow and perturbation vari-
ables, into the set of governing Eqs. (10)–(12), followed by linear-
ization to first-order in small quantities, yields the following
system of equations:

PrðD4 þ k4Þ~w� ikD3w~wþ ikðD2 � k2ÞDw~w

� ikPr RaT
~hT þ

RaS

Le
~hS

� �
D~w

¼ pðD2 � k2Þ~w ð43Þ
ðD2 � k2Þ~hT � ikDw~hT � CTD~wþ ikDhT
~w ¼ phT ð44Þ

1
Le
ðD2 � k2Þð~hS � a~hTÞ � ikDw~hS � CSD~wþ ikDhS

~w ¼ phS ð45Þ

where RaS ¼ RaTuLe is the solutal Rayleigh number.
The corresponding boundary conditions are

y ¼ �1=2; ~w ¼ 0; D2 ~w ¼ ð1=Da�1ÞD~w; D~hT ¼ D~hS ¼ 0 ð46Þ

y ¼ 1=2; ~w ¼ 0; D2 ~w ¼ ð�1=Da�2ÞD~w; D~hT ¼ D~hS ¼ 0 ð47Þ

where D ¼ d=dy.The perturbed state Eqs. (43)–(45) with the bound-
ary conditions (46) and (47) may be written in a compact matrix
form as

LðkÞY ¼ pMðkÞY ð48Þ

where Y ¼ ½~w; ~hT; ~hS� is a three-component vector of the perturbation
and L(k) and M(k) are two linear differential operators that depend
on the control parameters RaT;RaS; Le; Pr, a, Da�1 and Da�2.

The set of Eq. (48) is solved using a finite differences scheme.
Five-point central schemes for spatial discretization in the domain
between y = �1/2 and y = 1/2. For N computational points, the
resulting discrete system has 3N eigenvalues that can be found
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using a standard IMSL subroutine such as DGVCCG. The details of
the numerical procedure are discussed in details by Bahloul et al.
(2003) and thus not presented here.

The validation of the present stability analysis can be made for
the case considered by Prud’homme and Hung Nguyen (2002) for
the particular case of pure fluid layer (RaS = 0), bounded by solid
boundaries (Da�1 ¼ Da�2 ¼ 0). The critical values obtained by these
authors, displayed in Table 1, are observed to be in excellent agree-
ment with the results of the numerical procedure described above.

As predicted by the parallel flow theory the onset of motion of
the rest state of the present system occurs at a supercritical Ray-
leigh number given by Rasup

TC ½1þ uðaþ LeÞ� ¼ R0: Fig. 6 illustrates
the influence of parameters Da�1 and Da�2, i.e. the slip conditions
at the interface of the fluid layer, on the onset of motion. The par-
allel flow theory, displayed by solid lines, are seen to be in excel-
lent agreement with the numerical solution of the linear stability
theory predicted in this section for the particular case W = 0 i.e.
the rest state. As expected, it is observed from Fig. 6 that
R0 = 720 as Da�1 and Da�2 are made small enough. This result is in
agreement with the predictions of Sparrow et al. (1964) for the
case of a fluid layer bounded by rigid walls. Also, the value
R0 = 120, corresponding to the case of a fluid layer with free bound-
ary conditions is recovered in the limit Da�1 !1 and Da�2 !1.
Furthermore, the case of a fluid layer bounded by a solid horizontal
boundary on one side and a free surface on the other side is recov-
ered in the limit Da�1 !1 and Da�2 ! 0 or Da�1 ! 0 and Da�2 !1.
For this situation R0 = 320 as reported in the past by Sparrow
et al. (1964). For intermediate value of Da�1 and Da�2 Fig. 6 shows
a smooth transition of R0 between the limits discussed above.

With the linear stability analysis discussed above it is possible
to predict numerically the conditions for which the steady convec-
Table 1
Validation of the numerical code, for RaS = 0 and Da�1 ¼ Da�2 ¼ 0, in terms of RaHopf

TC , kC

and xC

Prud’homme and Hung Nguyen (2002) Present work

Pr RaHopf
TC kC xC RaHopf

TC kC xC

50 64276 4.626 183.9 64276 4.626 183.9
100 65126 4.662 187.1 65126 4.662 187.1
500 65819 4.691 189.8 65819 4.691 189.8

5000 65977 4.697 190.4 65977 4.697 190.4
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Fig. 6. Parameter R0 as a function of Da�1 and Da�2.
tion, predicted by the parallel flow theory, eventually becomes
unstable. The transition, called Hopf’s bifurcation, occurs at a crit-
ical Rayleigh number RaHopf

TC which depends upon the value of the
governing parameters, namely RaS, Le, Pr, a, Da�1 and Da�2. Fig. 7
illustrates the influence of the Prandtl number Pr and solutal Ray-
leigh number RaS on the critical Rayleigh number RaHopf

TC for the
case of a fluid layer bounded by solid boundaries (Da�1 ! 0 and
Da�2 ! 0). The curve corresponding to RaS = 0 will be discussed
first. For this situation, considered in the past by Prud’homme
and Hung Nguyen (2002), convection in the fluid layer is induced
solely by the temperature gradients. As discussed by these authors
the resulting curve indicates that RaHopf

TC increases considerably as
the value of Pr is made smaller. This results from that the fact
the dissipation of the thermal perturbations, at the origin of the
flow instability regime, is enhanced as Pr is made small (i.e. the
thermal diffusivity is increased). Consequently a higher critical
Rayleigh number (i.e. stronger heat flux at the bottom boundary)
is required to destabilize the flow. For large Prandtl numbers
ðPr P 500Þ the results indicate that RaHopf

TC reaches an asymptotic
value. For intermediate values of Pr it is observed that RaHopf

TC

reaches a minimum value for Pr = 0 (1). The way that the critical
Hopf Rayleigh number is affected by the presence of solutal buoy-
ancy forces is depicted in Fig. 7 for both the cases of double-diffu-
sive convection (a = 0) and Soret-induced convection (a = 1). The
curves for RaS = 104 correspond to a situation for which both the
thermal and the solutal buoyancy forces are destabilizing. As a re-
sult the onset of the flow instability occurs at lower values than
those obtained for the pure thermal situation (RaS = 0). Naturally,
the reverse situation is observed for RaS = �104, i.e. when the ther-
mal and solutal buoyancy forces are opposing each other. The crit-
ical Rayleigh number for the onset of Hopf bifurcation can also be
estimated by the numerical solution of the full governing equa-
tions. Thus, for double-diffusive convection (a = 0) it was found
that, for u = 0.2, Le = 2, Pr = 1 and A = 10, the transition from steady
to oscillatory convection occurs approximately at RaHopf

TC ’ 39000.
This result is in good agreement with the value RaHopf

TC ’ 37446,
predicted by the present linear stability analysis.

The influence of the slip coefficient parameters in the Beavers–
Joseph condition, a�1 and a�2 on the stability of the convective flow
predicted by the parallel flow approximation, RaHopf

TC , is illustrated
in Fig. 8 for Da1 ¼ Da2 ¼ 10�6 and RaS = 0. As expected RaHopf

TC is
minimum when both a�1 and a�2 tend towards zero, i.e. for the case
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of fluid layer with free upper and lower boundary conditions.
Naturally, RaHopf

TC is maximum when the fluid layer is bounded by
solid horizontal walls, for which a�1 and a�2 tend towards large val-
ues. Furthermore it is seen that the influence of a�2 is considerable
when a�1 is relative large, for which an increase of a�2 indicates a
transition between rigid–free and rigid–rigid boundary conditions.
However, the influence of a�2 on the transition between free–free
and free–rigid boundaries (a�1 ! 0) is found to be considerably less
important.

Fig. 9 illustrates the influence of parameter a� ¼ a�1 ¼ a�2 on
RaHopf

TC for various values of Da and when RaS = 0. The curves indi-
cate that a decrease in Da results in an increases of the critical Ray-
leigh number for the onset of oscillatory convection, RaHopf

TC . This is
because a decrease of the Darcy-number implies a low permeable
porous lining. This causes a damping of the fluid motion, requiring
a large critical Rayleigh number to destabilize the steady convec-
tive flow. Also, it is observed that the influence of Da is consider-
ably reduced as the value of a� is made larger.
6. Conclusions

The present paper is devoted to the onset and development of
convection in a horizontal layer of a binary fluid bounded by thin
porous layers. The Beavers–Joseph (BJ) condition is employed to
model the boundary condition at fluid/porous interface. Both the
case of double-diffusion convection (a = 0) and Soret-driven con-
vection (a = 1) are considered. The analytical solution, based on a
parallel flow approximation, reveals in closed form, the role played
by the BJ-slip condition at the interface Da�1 and Da�2, thermal Ray-
leigh number RaT, buoyancy ratio u, Lewis number Le and the type
of convection (i.e. parameter a) considered. The main conclusions
of the present analysis are:

(i) The analytical model derived in this study yields, for aiding
flow (u > 0), the supercritical Rayleigh number for the onset
of convection from the rest state in terms of the BJ-slip
condition. The prediction of the critical Rayleigh number is
correctly obtained from the present parallel flow approxima-
tion because convection occurs at zero wave number when
Neumann boundary conditions are applied on the boundaries.
For opposing buoyancy forces (u < 0) the model predicts the
existence of a subcritical Rayleigh number, when the flow
bifurcates from the rest state through finite-amplitude con-
vection. An explicit expression for the subcritical Rayleigh
number is obtained in terms of u, Le, Da�1, Da�2 and a. For
finite-amplitude convection, useful expressions have been
obtained for velocity, temperature and solute distributions
in the core of the layer. The main features predicted by the
analytical solution are confirmed by numerical solutions of
the full governing equations.

(ii) The stability of the convective motion, predicted by the paral-
lel flow approximation, has been investigated numerically on
the bases of the linear stability theory. It has been found that
the critical Rayleigh number for the onset of Hopf bifurcation
depends upon u, Le, Pr, Da�1 and Da�2.
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